
ARTICLE IN PRESS
0889-9746/$ - se

doi:10.1016/j.jfl

�Correspond
E-mail addr
Journal of Fluids and Structures 22 (2006) 59–75

www.elsevier.com/locate/jfs
Fluid–structure interaction modelling of nonlinear aeroelastic
structures using the finite element corotational theory

A. Relvasa, A. Sulemanb,�

aDepartment of Mechanical Engineering, IDMEC-Instituto Superior Técnico, Av. Rovisco Pais, 1049 - 001 Lisbon, Portugal
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Abstract

The application of the finite element corotational theory to model geometric nonlinear structures within a

fluid–structure interaction procedure is proposed. A dynamic corotational approximately-energy-conserving algorithm

is used to solve the nonlinear structural response and it is shown that this algorithm’s application with a four-node flat

finite element is more stable than the nonlinear implicit Newmark method. This structural dynamic algorithm is coupled

with the unsteady vortex-ring method using a staggered technique. These procedures were used to obtain aeroelastic

results of a nonlinear plate-type wing subjected to low speed airflow. It is shown that stable and accurate numerical

solutions are obtained using the proposed fluid–structure interaction algorithm. Furthermore, it is illustrated that

geometric nonlinearities lead to limit cycle oscillations.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Fluid–structure interaction (FSI) problems are characterized by the coupling between the fluid and the structure. One

important application field is aeroelasticity.

Most of the work on nonlinear aeroelasticity reported in the open literature has concentrated on improving the

modelling of the fluid flow using the nonlinear Euler/Navier–Stokes equations (Liu et al., 2001, 2000; Lee-Raush and

Batina, 1993; Alonso et al., 1995; Alonso and Jameson, 1994).

More recently, there is an increased interest in new aircraft design with high aspect-ratio wings, which are very

flexible and consequently structural geometric nonlinear effects play an important role in the system dynamics. Some of

the pioneering developments considering nonlinear structures in aeroelasticity were reported by Dowell. He studied

limit cycle oscillations (LCO) of plates (Dowell, 1966, 1967) and curved plates (Dowell, 1969, 1970). More recently,

Weiliang and Dowell (1991) studied for the first time LCO of a cantilever plate in a supersonic flow. The plate was

modelled using the von Kármán theory and the Rayleigh–Ritz approach was used to solve the nonlinear oscillations.

The fluid was modelled using the quasi-steady supersonic aerodynamic theory. This paper studied the effect of the

length to width ratio on vibration. Tang et al. (1998) studied nonlinear aeroelastic systems using a reduced-order
e front matter r 2005 Elsevier Ltd. All rights reserved.
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aerodynamic model. They studied an airfoil with a trailing-edge flap, including structural free-play nonlinearities, and

compared it with experimental results. Tang et al. (1999b) also studied LCO in low-aspect delta wing models in low

subsonic flow. A vortex lattice aerodynamic model was used and the structure was modelled using Lagrange equations

based on the von Kármán’s plate equations. A cantilevered wing LCO in low subsonic flow was also studied

(Tang et al., 1999a) using the mentioned theories. Patil and Hodges (1998), Patil et al. (2001), and Patil (1999)

have studied high aspect ratio wings with structural nonlinearities using a geometrically-exact mixed formulation for

dynamics of moving beams (Hodges, 1990; Patil et al., 1998). The fluid was modelled with finite-state unsteady

aerodynamics with the ability to model dynamic stall. The effects of the geometric nonlinearities on the aeroelastic

behaviour were also studied by Patil et al. (1999). It was shown that curved beams and straight wings behave

differently due to the curved beams being affected by the curvature-induced changes in the effective bending-torsion

coupling and by the direction of the aerodynamic loading. Garcia and Guruswamy (1999) applied a coupled nonlinear

beam finite element theory with an existing Navier–Stokes aerodynamic model. They studied static aeroelasticity of

three high aspect ratio wings in the transonic regime. Kamakoti et al. (2002) presented a summary of recent aeroelastic

models.

Although there is some research being done in the field of nonlinear aeroelastic structures, it is essential to improve

the modelling of the structural field within existent fluid–structure interaction methods. The method proposed in this

article can be applied within an existent linear fluid–structure interaction software and a nonlinear fluid–structure

interaction solution can be obtained.

Staggered algorithms are very popular to solve these problems. The structure and fluid solutions are determined

separately and each treats the interaction effects as external disturbances. This procedure allows the use of existing

software developed in the structural and fluid dynamics fields and takes advantage of the research developments that

have been made in both fields. Some of the first publications on applying staggered algorithms to solve fluid–structure

interaction problems were done by Felippa and Park (1980), Park and Felippa (1980), and Park et al. (1977). They

studied these algorithms’ stability and accuracy. Piperno et al. (1995) studied the partitioned procedures for the

transient solution of coupled aeroelastic problems. The accuracy, stability, heterogeneous computing, sub-cycling, and

parallel processing were analysed. It has been shown (Farhat and Lesoinne, 1998, 2000) that the ‘‘Improved Serial

Staggered’’ (ISS) algorithm is more stable, accurate, and efficient than the conventional staggered algorithms. In the

present article the ISS algorithm proposed by Farhat and Lesoinne (1998, 2000) is used.

In the present study, it is proposed to use the finite element corotational theory to solve the geometric nonlinear

structure. This theory separates the rigid body motion out of the description of strains.

The theory presented in the present article is based on the work by Crisfield, who developed a ‘‘consistent

corotational formulation’’ (Crisfield, 1990) and applied it to three-dimensional beams. The corotational theory

application (Peng and Crisfield, 1992) to triangular shell elements with constant strain and constant curvature was also

documented. Later (Crisfield et al., 1995), a lower-order element for elastic and elasto-plastic large-strain elements was

developed. A three-dimensional theory (Moita and Crisfield, 1996) with an extension to large-strain formulation and

with emphasis on hyperelasticity was developed and applied to an eight-node brick element with three translational

degrees of freedom. A unified corotational framework (Crisfield and Moita, 1996) for solids, shells, and beams was also

presented and it was applied to triangular and quadrilateral shell elements with rotational degrees of freedom, to facet

shell elements based on Morley’s triangle, and to three-dimensional beams. A static corotational simple faceted shell

element was presented (Crisfield et al., 1997) and nonlinear energy conserving dynamics techniques were developed.

Furthermore, the nonlinear implicit dynamic algorithms are often unstable. To overcome that, an implicit dynamic

corotational method that approximately conserves the energy was proposed by Crisfield and Shi (1994). This theory

(‘‘energy conserving’’ or ‘‘approximately energy conserving’’) was applied to beams (Crisfield et al., 1996). In the

present article, this dynamic implicit procedure is applied to a four-node flat element. The corotational theory has the

advantage of making possible to use already developed linear codes to obtain the nonlinear solution.

The corotational theory developed by Rankin and Brogan (1986) was used to study an unrestrained and flexible

aircraft during high-G maneuvers by Farhat et al. (2001). In that study, the large rigid body motions of the aircraft were

considered and the structure presented small deformations, whereas the present article considers large structural

deformations.

In short, this article presents the nonlinear corotational theory application with a four-node flat element. A

corotational nonlinear dynamic implicit algorithm that conserves the energy approximately is also used. Two structural

problems are solved to show the accuracy and stability properties of this algorithm. To indicate the superiority of the

presented method, the same problems are also solved using the nonlinear implicit Newmark method. Then, the

improved serial staggered fluid–structure interaction algorithm is used to couple the corotational structural theory

presented and the unsteady vortex-ring method. A nonlinear clamped plate subjected to low speed airflow is studied to

illustrate the fluid–structure interaction procedure.
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2. Geometrically nonlinear structural model

In what follows, the general idea of the corotational theory is delineated. For more detail, see Moita and Crisfield

(1996), Crisfield and Moita (1996), Crisfield et al. (1996), Moita (1994), Crisfield (1997), and Relvas (2002).
2.1. The corotational theory

In the finite element corotational description, one element displacement is considered to be composed of a rigid body

motion of the base configuration and of the corotated element deformations (Fig. 1). Each element has a local

coordinate system XL, YL, ZL attached to a node and this system continuously rotates with the element. The linear

formulation is valid with respect to this system. The coordinate system rotation produces the nonlinearity. In this article

a four-node flat element is used with five degrees of freedom per node p (three translations d and two rotations h) based

on Mindlin’s assumptions.

Consider a generic element k transformation matrix Tk, which relates a small change of the nodal displacement vector

pLk in the local coordinate system, and nodal displacement vector pk in the global coordinate system (see the two-

dimensional diagram in Fig. 1, considering only the translational degrees of freedom d). This can be written as

dpLk ¼ Tkdpk. (1)

As the virtual work in the local system is equal to the virtual work in the global system ðdpTLkfiLk ¼ dpTk fikÞ; the global
internal nodal forces fik and the local internal forces fiLk are related as

fik ¼ TT
k fiLk. (2)

Differentiating Eq. (2) and defining Klk as the kth element linear stiffness matrix and, recalling that fiLk ¼ KlkpLk is

valid because the linear relationship is verified at the local level, one obtains the kth element nonlinear tangent stiffness

matrix KTk:

KTk ¼ TT
kKlkTk þ Ktsk. (3)

The matrix Ktsk is related with the small variation of Tk and can be explicitly determined. The matrix Tk is determined

based on geometric considerations. The polar decomposition theorem is applied to compute the local corotating

coordinate system. This method leads to a node-numbering-independent formulation and it passes the large-strain

patch test (Crisfield, 1997).
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2.2. Nonlinear dynamics

It has been verified by Simo and Tarnow (1992), Simo et al. (1995), and by Crisfield et al. (1997), Crisfield and Shi

(1994), Crisfield et al. (1996), and Galvanetto and Crisfield (1996) that the implicit dynamic algorithms often used in

linear dynamics do not exhibit a good behaviour when applied to nonlinear dynamics. An approximately-energy-

conserving-corotational algorithm, based on the mid-point rule, was proposed by Crisfield and Shi (1994) and it was

shown that its application to beams provides stable and accurate solutions in the nonlinear regime.

The conventional implicit dynamic algorithms are characterized by determining the solution at time step tþ Dt using

the solutions obtained at time step t. With the algorithm proposed by Crisfield and co-workers, the information

obtained at the mid-steps m� ¼ t� Dt=2 and mþ ¼ tþ Dt=2 is also used. Although this algorithm might appear more

complex and more data has to be stored, the stability and accuracy obtained overcome these inconveniences as reported

in the literature [e.g. Crisfield (1997)].

In a conventional implicit dynamic algorithm, the dynamic equation at time step tþ Dt is

ḡtþDt ¼ fitþDt � fetþDt þM€ptþDt ¼ 0, (4)

where ḡtþDt is the dynamic out-of-balance force vector, fitþDt is the internal force vector at time instant tþ Dt, fetþDt is

the external force vector at time instant tþ Dt, M is the finite element mass matrix, and €ptþDt is the nodal acceleration

vector at time step tþ Dt.

With the approximately energy conserving algorithm as originally proposed by Crisfield et al. (1996), Eq. (4) is

rewritten at time step m+. The important step consists of determining the internal forces fimþ at the time interval mid-

point, using the average of the initial and final time step internal forces. Note that the internal forces are not determined

from the displacement at the time interval mid-point (Crisfield et al., 1997). The dynamic equations are written at the

mid point as

ḡmþ
¼

Tt þ TtþDt

2

� �T
fiLt þ fiLtþDt

2

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{fiLmþ

�fe;mþ þM
_ptþDt � _pt

Dt

� �
¼ 0. (5)

A predictor/corrector procedure is used. The predictor step consists of determining Dp from

Dq̄e ¼ K̄T;m�Dp, (6)

where

K̄T;m� ¼ KTm� þ
2

Dt2
M, (7)

Df̄e ¼ femþ � fim� þ
2

Dt
M_pt. (8)

The matrix KTm� is the nonlinear tangent stiffness matrix determined at time step m�. The displacement at step tþ Dt

is determined as

ptþDt ¼ pt þ Dp, (9)

and the velocity is determined from

_ptþDt ¼
2

Dt
Dp� _pt. (10)

As the solution does not satisfy the equilibrium, an iterative corrector step is applied until a convergence criterion is

satisfied. Each iteration i consists of determining dpi
iþDt from

ḡi�1
mþ
þ K̄

i�1

T;mþ
dpi

tþDt ¼ 0, (11)

where ḡi�1
mþ

is determined applying _pi�1
tþDt, f

i�1
iLtþDt and Ti�1

tþDt to Eq. (5). The element nonlinear tangent stiffness matrix K̄mþ

is determined from

dfimþ ¼
Tt þ TtþDt

2

� �T

d
fiLt þ fiLtþDt

2

� �
þ d

Tt þ TtþDt

2

� �T

fiLmþ

¼
Tt þ TtþDt

2

� �T dfiLtþDt

2

� �
þ

dTtþDt

2

� �T

fiLmþ , ð12Þ
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Fig. 2. Approximately-energy-conserving dynamic algorithm.
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and thus the K̄T;mþ matrix takes the form:

K̄T;mþ ¼
1

2

Tt þ TtþDt

2

� �T

KlTtþDt þ Kts. (13)

Note that for determining Kts one should use the internal force vector fimþ . In each corrector iteration the

displacement and velocity are updated. The velocity variation is determined from

d_ptþDt ¼
2

Dt
dptþDt. (14)

This procedure is illustrated in Fig. 2. It is noted that K̄T;m� and fim� are known from the previous time step. In the

predictor phase, Dp is calculated and the predicted ptþDt and _ptþDt are determined. The variables p0tþDt and _p
0
tþDt are set

as ptþDt and _ptþDt. In the corrector phase, the deformation variation dpi
tþDt is determined iteratively until a convergence

criterion is satisfied. When that criterion is satisfied, K̄T;m� and fi;m� are set as K̄T;mþ and fimþ so they can be used in the

next time step.
3. Fluid flow modelling

The fluid flow was modelled using the vortex-ring method which models inviscid, irrotational, and incompressible

flows. This method is a simple way to obtain unsteady fluid flow solutions with just a two-dimensional grid, instead of a

three-dimensional grid around the structure. At this stage, the goal was to evaluate the behaviour of the corotational

approximately-energy-conserving algorithm within the staggered algorithm. Using a higher-order fluid model would

induce extra complexities to the procedure. A code based on the Navier–Stokes equations would add difficulties as

three-dimensional mesh generation, mesh deformation, and more computational time would be necessary.

The unsteady vortex-ring method is based on the concept of dividing the wing into panels and placing a vortex ring

singularity element on each panel (Fig. 3). A linear algebraic equation system is formed from the Laplace equation

and the zero normal flow boundary condition (Katz and Plotkin, 1991). The vortex strength is determined at each

element, and from these values the aerodynamic forces on the structure are determined using the Kutta-Joukowski’s

theorem.
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4. Fluid–structure interaction

One of the most popular staggered algorithms applied to FSI (fluid–structure interaction) is the ‘‘serial conventional

staggered’’ algorithm where the information between fluid and structure is transferred at time steps t; tþ Dt; tþ 2Dt,

etc. The algorithm used in this study is slightly different; it was proposed by Farhat and Lesoinne (2000) and it was

named as the ‘‘improved serial staggered’’ procedure (ISS). The structural deformation transferred to the fluid is

determined with the structural code at time steps t; tþ Dt, etc. whereas the loads on the structure are determined with

the fluid code at time steps t� Dt=2; tþ Dt=2, etc. (Fig. 4). Although this might seem more complex, it was proved to be

more accurate and efficient, allowing for larger time steps.

Knowing the structure initial deformation p0 and velocity _p0, the algorithm starts by initializing the fluid dynamic

mesh motion on the structure surface at time ð�Dt=2Þ with

x�Dt
2
¼ p0 �

Dt

2
_p0. (15)

Next, the flow problem is solved and the pressure field at time tþ Dt=2 is determined and converted to the nodal

structural loads FtþDt=2. The structural displacement ptþDt and the velocity _ptþDt due to these loads are determined

solving the finite element dynamic equations. Next, the fluid mesh is deformed using

x
tþ

1
2
Dt
¼ x

t�
1
2
Dt
þ Dt_pt. (16)

The fluid flow solution is determined and this procedure is successively repeated.
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5. Numerical results

5.1. Nonlinear structures

To show the validity of the structural code developed, the approximately-energy-conserving corotational algorithm

was applied to two nonlinear structural dynamic problems. The results obtained are presented next.

5.1.1. Square plate subjected to a uniform pressure

The dynamic nonlinear analysis of a simply supported square plate, illustrated in Fig. 5, subjected to an impulsive

uniform pressure was performed using the approximately-energy-conserving corotational algorithm. The results

obtained were compared with the numerical ones obtained by Belytschko et al. (1984) and the analytical solution

obtained by Balmer and Witmer (1964).

The plate center-point vertical displacement obtained is presented in Fig. 6. Only a quarter of the plate was modelled

due to the load and geometry symmetry. The problem was solved with a 6� 6 mesh and a Dt ¼ 4� 10�5 s time step.
L
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E = 689.48 GPa
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ρ = 7.16361 kg/m
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Fig. 5. Square plate under impulsively uniform pressure.
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Fig. 6. Simply supported square plate center point out-of-plane deformation.
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Table 1

Simply supported square plate results

Solution Time step No. of elements Max. w (cm)

Present solution 4� 10�5 36 0.5326

Analytical (Balmer and Witmer, 1964) None None 0.5408

Triangular elements (Belytschko et al., 1984) 4� 10�6 32 0.5070

Quadrilateral elements (Belytschko et al., 1984) 6� 10�6 16 0.5083
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The solution obtained in the literature (Belytschko et al., 1984) is based on an explicit algorithm with a corotational

description to treat the geometric nonlinearities. They used triangular and quadrilateral elements.

The results obtained with the present theory agree quite well with the literature. Table 1 presents the different

solutions. The literature solutions (Belytschko et al., 1984) were obtained with smaller time steps because an explicit

solution procedure was used. The present solution is closer to the analytical solution (Balmer and Witmer, 1964) than

the explicit finite element solution (Belytschko et al., 1984).

This problem was also solved with the Newmark method (trapezoidal rule), so its stability could be compared with

the approximately-energy-conserving corotational algorithm. Results were obtained for a longer simulation time, in

order to, observe the algorithms stability behavior. Vertical displacement and the total energy variations are presented

in Fig. 7.

As can be observed, the solutions do not differ, but the energy change variation obtained with the Newmark method

is more pronounced. For the range of simulation, this energy variation did not affect the stability or accuracy, which

proves that for certain kind of problems the nonlinear Newmark method delivers good solutions.

5.1.2. Beam-like-plate subjected to a point load

Fig. 8 illustrates the experimental setup and data presented by Berggren (2001). Clamped boundary conditions are

applied. The beam is initially straight.

The total force results from the gravity and the applied force on the plate. The applied force depends on the point P0

displacement and it is determined as

FsðtÞ ¼ Fs

Pf � ðP0 þ u0ðtÞÞ

jjPf � ðP0 þ u0ðtÞÞjj
, (17)

where u0 is point P0 displacement determined with the finite element procedure, Pf is point Pf position vector and P0 is

point P0 position vector. Dynamic experimental results were obtained starting from the static solution with Fs ¼ 10N

and suddenly the load was removed. The numerical results were obtained setting the initial velocity to zero and the

initial displacement to the displacement obtained from the static nonlinear solution with Fs ¼ 10N.

Two different methods were used to determine the dynamic nonlinear solution: the corotational approximately-

energy-conserving method and the implicit Newmark method (trapezoidal rule). Both methods used the same 2� 10

mesh and a Dt ¼ 0:002 s time step. In Fig. 9, the numerical results obtained with the present method and experimental

results obtained by Berggren (2001) are presented. The graphic presents the point P0 displacements u,v,w in the x,y,z

directions, respectively. The curves have the same kind of behaviour. As damping was not taken into account during the

numerical simulation, it is observed that the amplitude of the numerical results does not decrease with time. Also, it can

be observed that the damping induces a lower frequency. In Fig. 10 it is possible to compare these results with the ones

obtained with the Newmark method. The energy variation of both methods is also presented. Initially, both algorithms

generate identical results. However, before the 1 s mark, the Newmark method energy is not preserved and the

algorithm fails.

With these examples the accuracy and stability properties are studied of the corotational approximately-energy-

conserving algorithm with a four-node flat element. Obtaining stable structural solutions for a long time period is very

important during aeroelastic computations, particularly to analyze the deformation curves and to interpret the

aeroelastic behaviour.

5.2. Nonlinear aeroelastic results

As an illustration of the developed method, consider the stability determination of a cantilevered wing vibration. The

fluid flow influences the wing oscillatory behaviour which might be damped, diverging, or the amplitude might not
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change. Depending on the type of motion, the wing might be stable, unstable or neutrally stable. The simulation starts

by determining the structural natural frequencies and respective vibration modes. Then, the wing is deformed into the

shape of one or more modes and the initial velocity is set to zero, or conversely, it has a nonzero initial vibration

velocity and no deformation. After the fluid steady state solution is determined, the calculated static aerodynamic loads

are applied to the wing and the finite element structural equations are solved to determine the structural deformation

due to the aerodynamic loads. After, a mode decomposition is performed using the least-squares method (Bennet and

Desmarais, 1975). A time-dependent displacement solution is obtained and the dynamic response is either damped,

diverging or it displays neutrally stable vibrations. As the fluid and structure grids do not coincide, an interpolation/

extrapolation procedure must be used to transfer data from one field to the other. As the present studied aeroelastic
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problem has a simple geometry, the infinite plate spline (IPS) method proposed by Harder and Desmarais (1972) is

used.

An aluminium square plate subjected to airflow with a low speed VT was studied (Fig. 11). The structure was

modelled using an 8� 8 grid. The fluid solution was obtained using 13 panels in the x-direction and 30 in the
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y-direction. A convergence study was performed to determine the optimal number of elements. The time step was

defined as Dt ¼ DX=VT , where DX is the fluid panel length in the x direction. The angle of attack is zero. This problem

was studied by Tang et al. (1999a) using a vortex-lattice aerodynamic method and a nonlinear structural modal

analysis.

To validate the staggered algorithm code, the problem was solved assuming a linear structure. Thus, the implicit

Newmark method (trapezoidal rule) was used to obtain the linear dynamic structural solution. First, the natural modes

and frequencies were determined. The first four natural frequencies were f 1 ¼ 2:99Hz, f 2 ¼ 7:28Hz, f 3 ¼ 19:05Hz and

f 4 ¼ 24:27Hz. The plate was initially deformed with each one natural vibration mode shape. Then the fluid flow

equations and the structural finite element equations were solved in time. It was observed that, for low flow speeds, the

plate kept vibrating with the respective excited natural frequency and it displayed a decaying oscillatory motion. Fig. 12

presents the tip displacement obtained exciting the second vibration mode for VT ¼ 10m=s.
As the flow speed increased, mode coupling was observed. At the speed of VT ¼ 42m=s the first (bending) and

second (torsion) modes coupled and the plate damping was approximately zero. Fig. 13 presents point x ¼ 0:75c and
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Fig. 11. Aeroelastic problem studied.
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Fig. 12. Tip out-of-plane displacement for VT ¼ 10m=s.
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y ¼ 0:75b out-of-plane displacement for VT ¼ 42m=s. These curves are the mode decomposition result of the time

curve obtained with the FSI algorithm.

This is the point from which the linear theory predicts that a decaying oscillatory motion becomes a growing

oscillatory motion. This value of flutter speed agrees with the literature (Tang et al., 1999a), thus validating the
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staggered procedure. Besides, preliminary wind tunnel tests were performed and it was observed a substantial

oscillatory motion in this velocity range.

Next, the same problem was studied assuming a nonlinear structure. Time deformation results were obtained for

velocities greater than the flutter speed. When using the linear structural theory, the in-plane deformation u and v were
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Fig. 18. Initial deformation influence on linear response for V T ¼ 44m=s.

0 0.5 1 1.5 2 2.5
-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5
x 10

-3

time (s)

W
 (

m
)

Mode 1 deformation initial conditions
Mode 2 deformation initial conditions

Fig. 17. Initial deformation influence on nonlinear response for VT ¼ 44m=s.



ARTICLE IN PRESS
A. Relvas, A. Suleman / Journal of Fluids and Structures 22 (2006) 59–75 73
neglected. Now, with the nonlinear structural theory, these deformations become important. Although they are smaller

than the out-of-plane deformations, they exhibit interesting dynamic characteristics. Fig. 14 represents the in-plane

(u; v) and out-of-plane (w) deformation variation with time at the point x ¼ 0:5c and y ¼ 0:75b for VT ¼ 44m=s. It is
observed that the nonlinear dynamic response settles to a steady state sinusoidal motion after 1 s, indicating LCO

behaviour. The LCO phenomenon is also observed in the phase portrait obtained (Fig. 15). The trajectory seems

initially chaotic but it converges to a closed trajectory. This is characteristic of the limit cycle oscillation phenomenon.

Fig. 16 presents the results obtained with the linear and the nonlinear structural theory. The linear theory predicted

the occurrence of flutter, while the nonlinear theory predicted limit cycle oscillations. As observed in Fig. 16, during the

first 0.1 s the linear and nonlinear solutions apparently seem to indicate similar behaviour. However, the linear

deformation keeps growing, while the nonlinear deformation oscillates with smaller amplitude. The difference between

the two solutions is due to the nonlinear coupling between membrane and bending stresses in the plate. During the first

few instants, the deformations u and v are very small. As the vertical deformation w grows, the nonlinear effects become

more accentuated and the coupling between bending and membrane stresses increases. The deformations u and v start

presenting a small oscillatory motion. From the energy point of view, in the linear case the fluid energy is transferred to

the structure and it manifests itself as an increase in the out-of-plane deformation. At the onset of flutter, the energy

transferred is greater than the structural potential energy, and the structural response diverges. In the nonlinear case,

this energy is distributed also to the in-plane deformations, thus dividing the total energy into three directions and not

being able to create instability in any particular displacement mode.

In short, when using the linear theory an oscillatory growing motion is observed. When using the nonlinear theory,

an oscillatory sustained motion with smaller amplitude is found (LCO). The out-of-plane displacement presents an

oscillatory motion in the negative direction. This fact was observed during wind tunnel tests.

To show that the results do not depend on the structural initial deformation, simulations were performed with initial

excitation of other structural modes. Figs. 17 and 18 represent the results obtained deforming the structure with the

shape of the first and second natural modes. As can be observed, the out-of-plane deformation shows the same kind of

behaviour and, as time progresses, the nonlinear solutions tend to coincide defining a limit cycle oscillation.
6. Conclusions

The development and application of nonlinear fluid–structure interaction tools to study aeroelastic problems has

been presented. The linear structural theories do not properly account for the effect of large structural deformations in

high aspect ratio wings. To this end, it has been shown that when considering nonlinear structural effects leads to limit

cycle oscillations rather than the unstable behaviour predicted by the linear solution.

The corotational finite element method using the approximately-energy-conserving algorithm to model geometrically

nonlinear structures and based on existing linear finite element codes was presented. The nonlinear structural solver was

coupled with a fluid solver using an improved serial staggered algorithm.

Two geometrically nonlinear structural dynamic problems were studied using the proposed algorithms combined

with the conventional implicit nonlinear Newmark method. The results demonstrate that the proposed algorithms for

solving nonlinear fluid–structure interaction problems are accurate and stable. The numerical results agree with the case

studies reported in the literature.
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